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1. INTRODUCTION 

A RECENT linear stability analysis [ 11 for an upward flow in 
a heated straight pipe (aiding flow) demonstrates that the 
most stable fully-developed flow mode is two counter-rotat- 
ing spirals. This analytical conclusion agrees with the pre- 
vious experimental observations [2]. This suggests that a 
simple-minded parallel, fully-developed flow can only exist 
in an unheated pipe. In this short note the results for 
an opposing pipe flow are reported. This condition can be 
achieved for a downward flow in a heated pipe, or for an up- 
ward flow in a cooled pipe. 

A linear stability analysis cannot determine whether the 
flow is supercritically, or subcritically, unstable. However, 
the experimental evidence clearly indicates that an aiding 
pipe flow is supercritical, and an opposing flow is subcritical. 
This means that, in an opposing pipe flow, the flow transition 
to turbulence occurs abruptly. For an aiding pipe flow, the 
transition process gradually passes through several equi- 
librium states. 

A common misconception in opposing pipe flows is that 
buoyancy can trigger flow separation. Furthermore, parallel 
counter-current flows are frequently assumed in the modeling 
of fully-developed, non-isothermal pipe flows. It is well 
known that counter-current parallel flows are inviscidly 
unstable (the Kelvin-Helmholtz instability). The rigorous 
analysis reported in this note clearly shows that the linear- 
stability boundary for a viscous flow rules out the possible 
existence of parallel counter-current flows in a heated pipe. 
It is believed that a similar stability analysis for a developing 
pipe flow can demonstrate that flow transition occurs long 
before separation. This is one reason why neither of the flow 
patterns described above have been observed experimentally. 

2. ANALYSIS 

The analysis for an opposing flow, which is identical to 
that for an aiding flow, can be found in ref. [l] and is not 
repeated here. The only difference is that the value of the 
Rayleigh number Ra for an opposing flow is negative. In 
the following analysis, K = - Ra is used. 

In terms of K, the.mean axial velocity is 

W = fJO(K”%)+gl,(K ‘!.‘Y) (1) 

where J. and I, are the usual modified Bessel functions, and 

RI!4 I,(Kli4) 

f = 2 I,(K’i4)J,(K1’4)-JO(K”4)11(K”4) 

g = -f 
J,(K I’“) 

I,(K 1’4) 

The associated temperature is 

K”% = f[J0(K”4r)-JO(K’i4)] 

-g[l,(K1’4r)--I,(K1’4)]. (2) 

The mean-flow velocity profiles for K = 0,50 and 100 are 
plotted in Fig. 1. Near the pipe wall, the fluid flows slower 
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FIG. 1. Mean-flow velocity profiles. 
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FIG. 2. Mean temperature distribution. 

due to the opposing buoyancy effect. Consequently, the fluid 
near the center of the pipe speeds up in order to satisfy 
mass conservation. The inflection point of the velocity profile 
indicates that the flow is likely to be unstable. The cor- 
responding distributions of mean temperature are given in 
Fig. 2. 

Due to the different nondimensionalization of the equa- 
tions in refs. 11, 21, the relation between the governing par- 
ameters is needed to compare results: (Gr/Re)? in ref. [2] 
equals K. tJ(0) in ref. [l]. The centerline temperature 0(O) as 
a function of K and the relation between (Gr/Re), and K are 
provided in Fig. 3. 

Substitution of equations (1) and (2) into the linear sta- 
bility equations in ref. [I] results in the eigenvalue problem 
which describes the stability boundary for opposing flows. 
The solution of this problem proceeds in the manner dis- 
cussed in ref. [I]. 
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FIG. 3. Centerline temperature and relation of Gr/Re in ref. [2] with K. 
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FIG. 4. Flow instability boundary in (Re, K) planes. 

3. RESULTS AND DISCUSSION 

The numerical results indicate that the flow is uncon- 
ditionally stable for an axisymmetric disturbance, n = 0. The 
flow instability boundaries for n = 1 and 2 are plotted in Fig. 
4. It is clear that n = 1 is the most unstable mode. The 
associated eigenmode is two counter-rotating spirals. Since 
the experimental observation shows that the flow is sub- 
critical and the flow transition is rather abrupt, it is difficult 
to detect this flow pattern in the laboratory. On the other 
hand, the experimental observations in ref. [2] show a tend- 
ency for the velocity profiles to become asymmetric before 
an unsteady motion sets in. For Re > 50, the analysis shows 
that the flow is unstable for K > 100. This rules out the 
existence of parallel counter-current flows as the fully- 
developed state in a heated pipe. Scheele and Hanratty [2] 
have speculated on the existence of this phenomenon, which 
is now analytically confirmed. For Re -C 50, the results are 

not reliable. This is because the velocities are scaled by the 
averaged axial velocity which is zero at Re = 0. It is worth- 
while to note that the fluid is unstably stratified for opposing 
pipe flows. Without forced flow, the fluid layer is unstable 
(the well-known Taylor instability). 

In conclusion, the linear-stability boundary for opposing 
flows convincingly demonstrates that a simple-minded par- 
allel counter-current flow cannot exist as a fully-developed 
flow in a heated vertical pipe due to flow instability. 
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